Homeostatic modulation of stimulation-dependent plasticity in human motor cortex.

نویسندگان

  • N V Ilić
  • S Milanović
  • J Krstić
  • D D Bajec
  • M Grajić
  • T V Ilić
چکیده

Since recently, it is possible, using noninvasive cortical stimulation, such as the protocol of paired associative stimulation (PAS), to induce the plastic changes in the motor cortex, in humans that mimic Hebb's model of learning. Application of TMS conjugated with peripheral electrical stimulation at strictly coherent temporal manner lead to convergence of inputs in the sensory-motor cortex, with the consequent synaptic potentiation or weakening, if applied repetitively. However, when optimal interstimulus interval (ISI) for induction of LTP-like effects is applied as a single pair, Motor evoked potential (MEP) amplitude inhibition is observed, the paradigm known as short-latency afferent inhibition (SLAI). Aiming to resolve this paradox, PAS protocols were applied, with 200 repetitions of TMS pulses paired with median nerve electrical stimulation, at ISI equal to individual latencies of evoked response of somatosensory cortex (N(20)) (PAS(LTP)), and at ISI of N(20) shortened for 5 msec (PAS(LTD)) - protocols that mimic LTP-like changes in the human motor cortex. MEP amplitudes before, during and after interventions were measured as an indicator based on output signals originating from the motor system. Post-intervention MEP amplitudes following the TMS protocols of PAS(LTP) and PAS(LTD) were facilitated and depressed, respectively, contrary to MEP amplitudes during intervention. During PAS(LTP) MEP amplitudes were significantly decreased in case of PAS(LTP), while in the case of PAS(LTD) an upward trend was observed. In conclusions, a possible explanation for the seemingly paradoxical effect of PAS can be found in the mechanism of homeostatic modulation of plasticity. Those findings indicate the existence of complex relationships in the development of plasticity induced by stimulation, depending on the level of the previous motor cortex excitability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Timing-dependent modulation of associative plasticity by general network excitability in the human motor cortex.

Associative neuroplasticity, which encompasses the modification of synaptic strength by coactivation of two synaptic inputs, has been linked to learning processes. Because unlimited plasticity destabilizes neuronal networks, homeostatic rules were proposed and experimentally proven that control for the amount and direction of plasticity dependent on background network activity. Accordingly, low...

متن کامل

Inducing homeostatic-like plasticity in human motor cortex through converging

24 Transcranial stimulation techniques have revealed homeostatic-like metaplasticity in the hand 25 area of the human primary motor cortex (M1HAND) that controls stimulation induced changes in 26 corticospinal excitability. Here we combined two interventional protocols which induce long27 term depression (LTD)-like or long-term potentiation (LTP)-like plasticity in left M1HAND 28 through differ...

متن کامل

Inducing homeostatic-like plasticity in human motor cortex through converging corticocortical inputs.

Transcranial stimulation techniques have revealed homeostatic-like metaplasticity in the hand area of the human primary motor cortex (M1(HAND)) that controls stimulation-induced changes in corticospinal excitability. Here we combined two interventional protocols that induce long-term depression (LTD)-like or long-term potentiation (LTP)-like plasticity in left M1(HAND) through different afferen...

متن کامل

Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex.

Recent experimental work in animals has emphasized the importance of homeostatic plasticity as a means of stabilizing the properties of neuronal circuits. Here, we report a phenomenon that indicates a homeostatic pattern of cortical plasticity in healthy human subjects. The experiments combined two techniques that can produce long-term effects on the excitability of corticospinal output neurons...

متن کامل

Modulation of effects of intermittent theta burst stimulation applied over primary motor cortex (M1) by conditioning stimulation of the opposite M1.

The excitability of the human primary motor cortex (M1) as tested with transcranial magnetic stimulation (TMS) depends on its previous history of neural activity. Homeostatic plasticity might be one important physiological mechanism for the regulation of corticospinal excitability and synaptic plasticity. Although homeostatic plasticity has been demonstrated locally within M1, it is not known w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physiological research

دوره 60 Suppl 1  شماره 

صفحات  -

تاریخ انتشار 2011